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OUTLINE

Earth’s energy balance
Perturbations
Key questions

Influence of aerosols

Climate research at BNL

Atmospheric Science Program ISP |
Atmospheric Radiation Measurement ARM'

Looking to the future



GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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RADIATIVE FORCING

A change 1n a radiative flux term in Earth’s radiation
budget, AF, W m™2.

Working hypothesis:
On a global basis radiative forcings are additive and

fungible.
e This hypothesis 1s fundamental to the radiative
forcing concept.

e This hypothesis underlies much of the assessment of
climate change over the industrial period.



Temperature Anomaly, K
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GREENHOUSE GASES AND TEMPERATURE
OVER 450,000 YEARS [\
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CLIMATE RESPONSE

The change in global and annual mean temperature,
AT, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature is
proportional to the forcing, but independent of its
nature and spatial distribution.

AT = A AF



CLIMATE SENSITIVITY

The change 1n global and annual mean temperature per
unit forcing, A, K/(W m-2),

A= AT/AF.

Climate sensitivity 1s not known and is the objective of
much current research on climate change.

Climate sensitivity 1s often expressed as the
temperature for doubled CO» concentration AT9x.

ATry = A AF>«



CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from major
national and international assessments

Carbon Dioxide and Climate:

A Scientific Assessment
NATIONAL ACADEMY OF SCIENCES
Washington, D.C. 1979
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Despite extensive research, climate sensitivity remains highly uncertain.



IMPLICATIONS OF UNCERTAINTY IN
CLIMATE SENSITIVITY

Uncertainty in climate sensitivity translates directly
into . . .

e Uncertainty in the amount of incremental
atmospheric CQO; that would result in a given
increase 1n global mean surface temperature.

e Uncertainty in the amount of fossil fuel carbon that
can be combusted consonant with a given climate
effect.

At present this uncertainty is about a factor of 3.



KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

e Paleoclimate studies.

e Empirical, from climate change over the instrumental
record.

e Climate modeling.

Climate models evaluated by comparison with
observations are essential to informed decision making.



IMPORTANCE OF KNOWLEDGE OF
CLIMATE TO INFORMED
DECISION MAKING

e The half life of incremental atmospheric CO; 1s about
100 years.

* The expected life of a new coal-fired power plant is
50 to 75 years.

Actions taken today will have long-lasting effects.

Early knowledge of climate sensitivity can result in
huge averted costs.



Radiative Forcing by Tropospheric Aerosol

Land Use Changes Industrial Emissions Biomass Burning
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AEROSOL IN MEXICO CITY BASIN




AEROSOL IN MEXICO CITY BASIN

Mexico City 1s a wonderful place to study aerosol properties and evolution.



AEROSOLS AS SEEN FROM SPACE

Fire plumes from southern Mexico transported north into Gulf of Mexico.




CLOUD BRIGHTENING BY SHIP TRACKS

Satelhte photo off Cahforma coast
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Aerosols from sh1p emissions enhance reﬂectlwty of marine stratus.



ESTIMATES OF AEROSOL DIRECT FORCING

By linear model and by radiation transfer modeling
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Global average sulfate optical thickness is 0.03: 1 W m-2? cooling.

In continental U. S. typical aerosol optical thickness is 0.1: 3 W m-2 cooling.



SENSITIVITY OF ALBEDO AND FORCING
TO CLOUD DROP CONCENTRATION
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Indirect forcing is highly sensitive to perturbations in cloud drop
concentration.

A 30% increase in cloud drop concentration results in a forcing of ~1 W m2.



GLOBAL-MEAN RADIATIVE FORCINGS (RF)

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)
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AEROSOL PROCESSES THAT MUST BE
UNDERSTOOD AND REPRESENTED IN MODELS
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CLIMATE RESEARCH AT BNL

Two major DOE programs

Atmospheric Science /\ SP
Program X

Radiative forcing by atmospheric aerosols
Field programs, instrument development, modeling
Chief scientist: Stephen Schwartz

Atmospheric Radiation £
Measurement Program MM
Atmospheric radiation and controlling variables, esp. clouds

Measurement, modeling, data management
Chief scientist: Warren Wiscombe




ASD INVESTIGATORS AT FIELD
- PROJECT IN MEXICO, 2006
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G-1 FLIGHT TRACKS DURING MAX-MEX
Composite of multiple flights during March, 2006
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SECONDARY AEROSOL PRODUCTION

Parcel age measured using -1og(NOx/NOy) as clock
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Dilution is accounted for by normalizing aerosol concentration to CO above
background.

~3 X increase 1n total aerosol; ~7 X increase 1n organic aerosol.

Measured increase 1n organic aerosol exceeds modeled based on
laboratory experiments and measured volatile organic carbon tenfold.



ARM MOBILE FACILITY




DEPLOYMENT IN NIAMEY, NIGER




Looking to the
Future . . .




Prediction is difficult,
especially about the future.
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PROJECTIONS OF FUTURE CO2 EMISSIONS

CO5 emissions (Gt Clyr)
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PROJECTIONS OF FUTURE CO2 CONCENTRATIONS
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Temperature Change (°C)

PROJECTIONS OF FUTURE TEMPERATURE CHANGE
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Sea level rise (metres)
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MELTING OF GREENLAND ICE CAP

Satellite determination of extent of glacial ice 1992 vs 2002

NASA Arctic Climate Impact Assessment, Cambridge, 2004

Complete melt of the Greenland ice sheet would raise the level of the
global ocean 7 meters.






CONCLUDING REMARKS

Atmospheric carbon dioxide will continue to increase
absent major changes in the world’s energy economy.

The consequences of this increase are not well known
but they range from serious to severe to catastrophic.

Present scientific understanding 1s sufficient to permit
“no regrets” decision making.

Research 1s urgently needed to refine “what if”
projections.

Actions taken (or not taken) today will inevitably affect
future generations.





